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COEFFICIENT INVERSE HEAT-CONDUCTION PROBLEM 

E. A. Artyukhin and A. V. Nenarokomov UDC 536.24 

The computational algorithm and the results are given for the solution of the in- 
verse problem of determining the total set of coefficients of the inhomogeneous 
quasilinear heat-conduction equation. 

Recently, nonsteady experimental--computational methods based on the solution of the coef- 
ficient (in the terminology of [l]) inverse heat-conduction problems (IHP) have been suf- 
ficiently widely used to determine the thermophysical characteristics of various structural 
and heat-protective materials. Expansion of the range of practical application of such 
methods is directly associated with the development of effective computational algorithms for 
the solution of nonlinear multiparameter inverse problems in which a whole set of unknown char- 
acteristics is determined from the data of a single nonsteady experiment. This type of al- 
gorithm may ensure maximum information retrieval from thermophysical experiments. 

Consider a one-dimensional heat-transfer process with a mathematical model in the form 
of a boundary problem for the quasilinear inhomogeneous heat-conduction equation 

C(T) a ToT Ox~ (%(T) 8--~x !, +S(T), x, ~ C Q = ( O ,  b )x (O,  T], (1) 

T(x, 0 ) = T  o(x), xG.[0, b], (2) 

?I)~(T(0, ~)) aT(O, ,) q-.UlT(O, ~)=g l (~ ) ,  ~C(0, %,1, (3) 
ax 

yoL (T (b, "c)) aT (b, T) (4) Ox -}- I~'-T (b, T) -~ go_ (T), ~ C (0, %,,], 

where  T o ( x ) ,  g , ( z ) ,  g=(z)  a r e  known f u n c t i o n s ;  b ,  Zm, V*, V2, Yx, Ya a r e  s p e c i f i e d  numbers .  

Suppose that thermosensors are placed at some number (N + 2) of points in the interval 
[0, b] with coordinates x = Xi, i = I, N, 0 = Xo < XI < ... < X N < XN+I = b, and dynamic 
temperature measurements are undertaken 

TexP(Xi, "t)= fi(T), i = 0, N q - I .  (5) 

It is assumed here that, if a boundary condition of the first kind is imposed at any boundary, 
the functions gj (~), j = i, 2 in Eqs. (3) and (4) are formed on the basis of the data of the 
corresponding measurements gx(T) = fo(T), g=(T) = fN+x(~)- Depending on a priori information 
on the characteristics C(T), %(T), and S(T), different formulations of the coefficient IHP are 
possible: the derivation of any one characteristic or some set of characteristics simultane- 
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ously. From the viewpoint of maximum information content of the thermophysical investigation, 
it is of interest to solve the inverse problem of determining the whole set C(T), %(T), and 
S(T). This problem is considered in the present work. �9 

The inverse problem which is analyzed may be written in the form of an operator equation 
of the first kind 

A u = [ ,  u6U, [EF, A:U--+F, (6) 

where u = {uz(T)}x z = {C(T), X(T), S(T)} is the desired vector function; A is a nonlinear oper- 
ator subject to the boundary problem in Eqs. (1)-(4) and corresponding to each element u @ U 
of the spur of the solution in Eqs. (1)-(4) T(Xi, z), i = 0, N + i. In the numerical solu- 
tion of Eq. (6), the operator A is usually constructed by finite-dimensional approximation of 
the problem in Eqs. (1)-(4) and hence is known with an error. The right-hand side f is formed 
using experimental data and is therefore also specified approximately. In this case, the 
problem in Eq. (6) is incorrect [2]. Its accurate solution is the element u ~ U for which 
the spur of the solution of the boundary condition in Eqs. (1)-(4) coincides with the specified 
right-hand side of Eq. (6), f ~ F. The space L2 is usually taken as F. With inconsistent 
specification of the initial data, there may be no accurate solution and, if it does exist, 
it will not have the property of stability relative to errors in the initial data [2]. 

In view of the incorrectness of the given inverse problem, it must be solved using 
special regularizing algorithms [2]. One effective and universal method of constructing such 
algorithms is iterative regularization [i]. In this case, any first-order gradient method, 
for example, the method of fastest descent or conjugate gradients, is used to construct the 
sequence minimizing the discrepancy functional J(u) = JlAu- fll F 

urq-1 ~___ ur  ~_ ~ r  G(j'cr)), r = 0, 1 . . . . .  R, (7) 

r 
where  u ~ i s  t h e  i n i t i a l  a p p r o x i m a t i o n ;  a i s  t h e  d e p t h  of  d e s c e n t ,  c h o s e n  f rom t h e  c o n d i t i o n  
Jr+l=minJ(u~q-czG(J'r ; G(J  v) i s  t h e  d i r e c t i o n  o f  d e s c e n t ;  R i s  t h e  number o f  t h e  l a s t  

a E R  + 

i t e r a t i o n ,  d e t e r m i n e d  i n  t h e  c o u r s e  of  s o l u t i o n  f rom t h e  d i s c r e p a n c y  c o n d i t i o n  J ( u  R) -- 6; 6 
i s  t h e  known i n t e g r a l  e r r o r  o f  t h e  i n i t i a l  d a t a .  

For  l i n e a r  i n c o r r e c t  p r o b l e m s  o f  t h e  t y p e  i n  Eq. ( 6 ) ,  i n  t h e  p r e s e n c e  o f  e r r o r  i n  t h e  
o p e r a t o r  A and t h e  r i g h t - h a n d  s i d e  f ,  t h e  p r e s e n t  method was g i v e n  a r i g o r o u s  m a t h e m a t i c a l .  
b a s i s  i n  [3 ,  4 ] .  For  t h e  s o l u t i o n  of  c o e f f i c i e n t  IHP,  which  a r e  a l w a y s  n o n l i n e a r ,  t h e  h i g h  
e f f i c i e n c y  of  t h e  i t e r a t i v e  a l g o r i t h m s  was d e m o n s t r a t e d  i n  [ 5 - 8 ] ,  f o r  e x a m p l e ,  where  t h e  
d e r i v a t i o n  o f  t e m p e r a t u r e  d e p e n d e n c e s  o f  one o r  two c o e f f i c i e n t s  o f  t h e  homogeneous  h e a t -  
c o n d u c t i o n  e q u a t i o n  was c o n s i d e r e d .  

W r i t i n g  t h e  mean s q u a r e  d i s c r e p a n c y  

N+ 1 "rrn 

J= ~[ [T(Xi, w)--fi(x)] zdx (8) 
i = 0  0 

the iterative algorithm for solution of the above-formulated inverse problem is constructed. 
Conditions ensuring unique solution of the problem are satisfied here [9, i0]. 

One of the central problems characterizing the computational efficiency of the iterative 
algorithms is to determine the gradient of the functional in Eq, (8). In solving coefficient 
inverse problems in which the desired characteristics depend on the solution of the direct 
problem in Eqs. (1)-(4), it is impossible to construct an effective procedure for minimizing 
the discrepancy in Eq. (8) in functional space. At the same time, the approach based on 
parameterization of unknown functions is very productive. As a result, the inverse problem 
is reduced to seeking the vector of unknown parameters including the coefficients of para- 
metric representation of all the desired functions. 

The components of the unknown function u = {ui(T)}~ are written in the form 

m l 

uz(T) = ~ p~cpth(T), l = 1, 3, (9) 
h=l 
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where g Zk(T), k = i, m~, ~ = i, 3 are specified systems of basis functions. Then, following 
the approach of [6], it may be shown that the gradient of the functional in Eq. (8) is deter- 
mined by the following formulas 

%~ ~' OT 
J;,h = - -  .( .i" ~I~'-~T qqu (T) dxd% k = 1, m~; (10)  

0 0 

*m o [ OZT �9 

�9 i- m 

dxd'c + I q; (0, z) OT (0, r_____) %h (T (0, r)) dr- -  
Ox 

~m Z) aT (b, x) 
- - . f  ~p(b, %h(T(b, r))d'~, k =  I, too; (11)  

o OX 

~ m  b 

J Jab = j" j' t~cPah (T) dxdr, le == 1, ms, ( 12 ) 
0 0 

where  ~b(x, z) i s  t he  s o l u t i o n  of  t he  boundary  problem f o r  t he  c o n j u g a t e  v a r i a b l e  

- - c ( r )  &~' - - s  azq:' T' aS , 
0~ Ox ~ c)T 

x, r E Q i - ( X i - 1 ,  X,)><(0, %,1, i=: 1, Nq-1; (13)  

~$1(x, "r,,,] = 0 ,  xE[X,_, ,  X/], i =  1, Nq-1; (14)  

yQ~(T(0, ,)) 0~x((),'Q -~ tZlq:,(0, "~) = 2 IT(0, r ) - -  fo(T)], TC [0, %,); (15)  
Ox 

~,(X,, r)----~i+l(X i, r), i =  1, N, "~E[0, %,), (16)  

[ 0r (X,, "~) 30i+1 (X,, T) ] = 2 [T (X,, *) - -  [, (r)], 
(T (Xi, ~)) k Ox - Ox 

i =  1 ,~ ,  rE [0, %,); (17)  

V~, (T (O, r)) 0r ~ (b, ,) Ox q-l%~N+~(b, ~):=2[T(b, r)--fN+~(r,)], rE[O, *.,). (18)  

In determining the depth of search ~r in iterative algorithms for solving multiparameter 
inverse problems, it is very effective to represent this quantity in the form of a vector of 
dimensionality corresponding to that of the desired solution of the inverse problem and to 
calculate the linear estimate for each component [ii]. Using this approach, u is written in 

the form 

r = {r a~, a~}.  ( 1 9 )  

The components of the vector in Eq. (19) are calculated from the solution of the following 
system of linear algebraic equations 

3 N--'I- I ~ m  N - -  1 ' t 'nz 

E a](~S~J(X,, r)x}h(Xi, r)dr)==-- W i [T(X,, r) - -  /, (r)] ~A (X;, r )dr ,  k .... 1; 3, (20) 
f=l 2=0 0 i=0 0 

where the functions ~j(x, T) satisfy the boundary problem 

0T OZT 0% 
--  X(T)  Oz + + 

C (T) O"v "~x z q- 2 - -  OT 6x 0x Ox z OT 

( 07" ~2 02~. 0S c ( r )  0 - ~  T ] ~j47 Wj. x, "cEQ; (21) 
+ k  ax / -7 - i  -~-+ o - -T - -  o, j 

x~s(x, 0 ) =  0, x(-[0, b]; (22) 

r)) r/ or{o, O;.{r(o, r) l+ 
t Ox Ox OT ] 

-k p~ q- p,,~,~(0, "~)=: 0, "~(0,  "~,~1; (23) 
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[ ~ (T (b. ~)) 
Ox 

aT (b, .~) & ( T  (b, ~)) r (b, ~:) ] + + 
Ox c)T l 

pj + Ix~fij(b, "0 = O, x 6 (0, ~:m], (24) 

where 

W j  =-= 

m i 07" ,~ , 
OT ~i Jt'lltq)llt (T) when ] .... 1 

h = l  

02T ~ (' cOT '12 
-}xL7 - ~ J;~h %k (r) + h=] \ Ox ] 
m3 

J'~.ff~3h (T) when i = 3, 
h = l  

07" ~ , 
pj = 0x h~=] J%~(P2k (T) when ! = 2, 

Z j. d(p~,OT when j =: 2. 
h =  1 

0 when ] =  1, 3, 

The system in Eq. (20) has a symmetric matrix and may be solved by one of the well-known 
methods, for example, the square-root method [12]. 

Note that the region of definition of the unknown functions is not known in advance, and 
must be refined at each iteration. 

A computational algorithm is now developed in accordance with the given scheme of solu- 
tion of the coefficient IHP. The boundary problems in Eqs. (i)-(4), (13)-(18), and (21)-(24) 
are replaced by the corresponding finite-difference approximations on space--time grids. An 
implicit approximation scheme is used, with iteration with respect to the coefficients [13], 
until the solutions coincide with the relative accuracy eo specified a priori. 

The algorithm for deriving the volume specific heat, thermal conductivity, and heat- 
source coefficient is realized in the form of a computer program, which is used to calculate 
a series of methodological examples. 

The solution of the IHP is modeled in the following traditional manner. The dependence 
of the coefficients of the heat-conduction equation on the temperature is specified, along 
with the initial and boundary conditions, and the direct problem is solved. Using the cal- 
culated temperaturefield, the readings of thermosensors "positioned" at several points of 
the spatial grid are formed. Then the inverse problem is solved under the assumption that 
the coefficients of the heat-conduction equation are unknown. 

With the aim of matching the errors of the finite-different approximation, the boundary 
problems in Eqs. (1)-(4), (13)-(18), and (21)-(24) are solved on the same space--time grid. 
The number of steps is chosen parametrically: the direct problem in Eqs. (1)-(4) is solved 
successively with increase in the number of steps, until the solutions coincide with accuracy 
co equal to the accuracy with which the solutions coincide in iteration with respect to the 
coefficients. Some of the results obtained are shown in Fig. i. 

Consider the nonsteady heating of an infinite plate of thickness b = 0.03 m for Ym = 21 
sec. The initial temperature distribution is taken to be constant at To = 300~ One 
boundary is heat-insulated: ~= = 0, y= = --i, g2 ~ 0; the other is subjected to intense thermal 

perturbations (~, = O, yt = --i) 

gl(~) = 0,019"10~, Wlm 2. (25)  

The specified coefficient values for the heat-conduction equation are given in Fig. i. 
The relative accuracy of the output from iterations with respect to the coefficients is 0.00L 

As the basis functions in Eq. (9), cubic B splines are used [14]. The unknown functions 
are approximated on the segment [Tmin, Tmax] = [300 ~ 1200~ using three division sections. 
The choice of the number of sections is made parametrically. 

The IHP is solved with "measurements" of the temperature by three thermosensors with 
coordinates Xo = 0, X, = 0.022, X2 = 0.03 m on the difference grid n T • n x = 50 • 42. The 
iterative process ends when the derived characteristics in adjacent iterations coincide with 

a specified relative accuracy ef = 0.01. 
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Fig. 1. Derivation of the dependences of the coefficients of 
the heat-conduction equation C, J/K-m3; X, W/K; S, W/m 3, on 
the temperature T, ~ i) specified values; 2) derivation for 
accurate data; 3) for initial data specified with errors; 4) 
derivation of ~ and C under the assumption that S is known. 

The error in deriving the unknown coefficients, defined as 

Tmax Tma x 
~ =  S ( u ~ ( T ) - - ~ J ( T ) ) 2 d T J  ~ (uj(T))2dT, ] =  1, 3, ( 2 6 )  

Tmin Tmi n 

where uj is the specified value and ~j is the derived value, is (Fig. 1): ~C = 0.03, 6~ = 
0.04; ~S = 0.07. 

In processing the data of actual experiments, the initial data for IHP solution (thermo- 
sensor readings) are known with errors; therefore, the solution of the above-described IHP 
is modeled for initial data formed with the errors 

[~ (T) : [i (~)(1 -~- ~o (T)), i : I, 3, ( 2 7 )  

where fi*(~) are the thermosensor readings specified with errors; fi(T) are the accurate 
values of the thermosensor readings; ~(r) is a random quantity distributed according to a 
normal law N(0, i); B is the relative maximum error of the calculations. In the calculations, 
B is taken to be 0.05. 

The results of deriving the dependences C(T), %(T), and S(T) using initial data specified 
with errors are shown in Fig. i. The errors in deriving the true dependences are, respec- 
tively: ~C = 0.06; ~ = 0.06; 5 S = 0.09. 

Note that the problem of determining the three coefficients of the heat-conduction equa- 
tion is significantly less well founded than the problem of deriving the two coefficients 
C(T), %(T). The results of determining C and % under the assumption that S is known are shown 
in Fig. i. The value of ~ is again taken to be 0.05; the error of the solution is dC = 0.045, 
~ = 0.048. 
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IDENTIFICATION OF BOUNDARY THERMAL PERTURBATIONS USING 

SPECTRAL FUNCTIONS 

Yu. M. Matsevityi, A. P. Slesarenko, 
and O. S. Tsakanyan 

UDC 536.24 

A method is proposed for solving the external inverse heat-conduction problem in 
a parametric formulation. 

The heat-transfer boundary conditions at the surface may be determined from available 
information on the temperature inside an object, which forms a topic of the external inverse 
heat-conduction problem (IHP), by various methods [1-4], the application of which depends on 
the formulation of the IHP, the required accuracy of solution, and the presence of corre- 
sponding computational resources. 

If the IHP is regarded as a control problem, in which the role of the control object is 
played by its model, the boundary conditions are taken as the input quantities, and the tem- 
peratures at the observation points as the output quantities, it is possible to speak of a 
correlation between the distributed input and output quantities, which may be expressed in 
the form of transfer functions or influence functions (the latter term, in our view, more 
closely corresponds to the physical meaning of this correlation). 

In a particular case, determining the transfer functions of objects with distributed 
parameters (DP objects) consists in solving the heat-conduction equation for a single input 
perturbation at one of the boundary points, with zero perturbations at the other points of 
the surface [5]. The distributed transfer function from a single source at the given bound- 
ary point to a finite set of internal points of the given object is obtained here. 

If, for each point boundary perturbation with amplitude fi in the grid model of the ob- 
ject, the distributed function Wi(x , y, z) is determined, where i = i, 2, ..., N, the W i 
functions may be used to write the relation between its temperature and all the input bound- 
ary perturbations for all its internal points, under the condition that the DP object is 
linear 

N 
T(x, y, z )= "~ f~W~ (x, y, z). 

~=1 

In this case, solving the IHP reduces to determining the amplitudes fi. Unique deter- 
mination of the function f(x, y, z) entails having information on the temperatures at N in- 
ternal points of the DP object and solving a system of N linear algebraic equations 

N 

T~-- EhWu; ]=1 '  2 . . . . .  N, 

where Tj* are the temperatures at the observation points of the DP object. 
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